Quotients of sums of distinct powers of three

Bruce Reznick
University of Illinois at Urbana-Champaign

Enumerative Algebraic and Geometric Combinatorics
2015 Fall Central Section Meeting of AMS
Chicago, October 3, 2015
This is a highly preliminary report.
This is a highly preliminary report.

The material on the Cantor set is part of a joint project with Jayadev Athreya (now at Univ. of Washington) and Jeremy Tyson (next door to me in Altgeld Hall, UIUC).
This is a highly preliminary report.

The material on the Cantor set is part of a joint project with Jayadev Athreya (now at Univ. of Washington) and Jeremy Tyson (next door to me in Altgeld Hall, UIUC).

The number theory material is part of joint projects with my recent and current graduate students: Katie Anders (now at Univ. of Texas - Tyler), Sakulbuth Ekvittayaniphon and Benjamin Wright.
This is a highly preliminary report.

The material on the Cantor set is part of a joint project with Jayadev Athreya (now at Univ. of Washington) and Jeremy Tyson (next door to me in Altgeld Hall, UIUC).

The number theory material is part of joint projects with my recent and current graduate students: Katie Anders (now at Univ. of Texas - Tyler), Sakulbuth Ekvittayaniphon and Benjamin Wright.

None of this material is close to ready for publication, and I can’t say which combinations of authors will be on what paper.
This is a highly preliminary report.

The material on the Cantor set is part of a joint project with Jayadev Athreya (now at Univ. of Washington) and Jeremy Tyson (next door to me in Altgeld Hall, UIUC).

The number theory material is part of joint projects with my recent and current graduate students: Katie Anders (now at Univ. of Texas - Tyler), Sakulbuth Ekvittayaniphon and Benjamin Wright.

None of this material is close to ready for publication, and I can’t say which combinations of authors will be on what paper.

Based on the abstract, this doesn’t seem like the other talks in the Special Session. I assure you that it is combinatorial, enumerative, algebraic and geometric, just not all at the same time.
My interest in the problem of the title comes from the usual “middle third” Cantor set:

\[C = \left\{ \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n} \middle| \alpha_n \in \{0, 2\} \right\}. \]
My interest in the problem of the title comes from the usual “middle third” Cantor set:

\[C = \left\{ \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n} \bigg| \alpha_n \in \{0, 2\} \right\}. \]

There is a folk-theorem that every \(u \in [0, 1] \) can be written as \(u = \frac{x+y}{2} \), \(x, y \in C \).
My interest in the problem of the title comes from the usual "middle third" Cantor set:

\[C = \left\{ \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n} \mid \alpha_n \in \{0, 2\} \right\} \]

There is a folk-theorem that every \(u \in [0, 1] \) can be written as \(u = \frac{x+y}{2} \), \(x, y \in C \).

Here is the proof. For \(u \in [0, 1] \), define \(x, y \in C \) by

\[u = \sum_{n=1}^{\infty} \frac{d_n}{3^n}, \quad d_n \in \{0, 1, 2\}; \quad x = \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n}, \quad y = \sum_{n=1}^{\infty} \frac{\beta_n}{3^n}; \]

where

\[d_n = 0 \implies (\alpha_n, \beta_n) = (0, 0), \]

\[d_n = 1 \implies (\alpha_n, \beta_n) = (2, 0), \]

\[d_n = 2 \implies (\alpha_n, \beta_n) = (2, 2). \]
My interest in the problem of the title comes from the usual “middle third” Cantor set:

\[C = \left\{ \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n} \bigg| \alpha_n \in \{0, 2\} \right\}. \]

There is a folk-theorem that every \(u \in [0, 1] \) can be written as
\[u = \frac{x+y}{2}, \quad x, y \in C. \]
Here is the proof. For \(u \in [0, 1] \), define \(x, y \in C \) by

\[u = \sum_{n=1}^{\infty} \frac{d_n}{3^n}, \quad d_n \in \{0, 1, 2\}; \quad x = \sum_{n=1}^{\infty} \frac{\alpha_n}{3^n}, \quad y = \sum_{n=1}^{\infty} \frac{\beta_n}{3^n}; \]

where \(d_n = 0 \implies (\alpha_n, \beta_n) = (0, 0), \)
\(d_n = 1 \implies (\alpha_n, \beta_n) = (2, 0), \)
\(d_n = 2 \implies (\alpha_n, \beta_n) = (2, 2). \)

In each case, \(d_n = \frac{\alpha_n+\beta_n}{2} \), so \(u = \frac{x+y}{2} \).
Put more simply,

\[C + C := \{ x + y \mid x, y \in C \} = [0, 2]. \]
Put more simply,

\[C + C := \{ x + y \mid x, y \in C \} = [0, 2]. \]

What can one say about other operations?
Put more simply,

\[C + C := \{ x + y \mid x, y \in C \} = [0, 2]. \]

What can one say about other operations?

Using methods which are indistinguishable from questions on a graduate qualifying exam in analysis, we have analyzed the image of \(C^2 \) under functions such as \(f(x, y) = x + \lambda y \), \(f(x, y) = xy \), \(f(x, y) = x^2y \), \(f(x, y) = x/y \).
Put more simply,

\[C + C := \{ x + y \mid x, y \in C \} = [0, 2]. \]

What can one say about other operations?

Using methods which are indistinguishable from questions on a graduate qualifying exam in analysis, we have analyzed the image of \(C^2 \) under functions such as \(f(x, y) = x + \lambda y, f(x, y) = xy, f(x, y) = x^2y, f(x, y) = x/y. \)

Since \(C \subset [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \), it is easy to see that \(u \in (\frac{1}{3}, \frac{4}{9}) \) cannot be written as \(xy \) with \(x, y \in C \).
Put more simply,

\[C + C := \{ x + y \mid x, y \in C \} = [0, 2]. \]

What can one say about other operations?

Using methods which are indistinguishable from questions on a graduate qualifying exam in analysis, we have analyzed the image of \(C^2 \) under functions such as \(f(x, y) = x + \lambda y \), \(f(x, y) = xy \), \(f(x, y) = x^2y \), \(f(x, y) = x/y \).

Since \(C \subset [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \), it is easy to see that \(u \in (\frac{1}{3}, \frac{4}{9}) \) cannot be written as \(xy \) with \(x, y \in C \).

We have proved however, that \(u \) can be written as \(x^2y \) with \(x, y \in C \), so \(u \) is a product of three elements of the Cantor set. It also turns out that the measure of the set of products of two elements is, to the first 8 digits, 0.80955358...
What’s relevant to this talk is what happens with quotients:

\[
\left\{ \frac{u}{v} \mid u, v \in \mathbb{C} \right\} = \bigcup_{m=-\infty}^{\infty} \left[\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right] = \left(\bigcup_{m=-\infty}^{\infty} \left(\frac{3}{2} \cdot 3^m, 2 \cdot 3^m \right) \right)^c
\]
What’s relevant to this talk is what happens with quotients:

\[
\left\{ \frac{u}{v} \mid u, v \in C \right\} = \bigcup_{m=-\infty}^{\infty} \left[\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right] = \left(\bigcup_{m=-\infty}^{\infty} \left(\frac{3}{2} \cdot 3^m, 2 \cdot 3^m \right) \right)^c
\]

One can then immediately determine whether a particular integer lies in \(C \), and this gives a number theorist countably many new questions.
What’s relevant to this talk is what happens with quotients:

\[\left\{ \frac{u}{v} \mid u, v \in C \right\} = \bigcup_{m = -\infty}^{\infty} \left[\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right] = \left(\bigcup_{m = -\infty}^{\infty} \left(\frac{3}{2} \cdot 3^m, 2 \cdot 3^m \right) \right)^c \]

One can then immediately determine whether a particular integer lies in \(C \), and this gives a number theorist countably many new questions.

1. \(x, 2x \in C \) if and only if \(x = \frac{1}{3^n} \).
What’s relevant to this talk is what happens with quotients:

\[
\left\{ \frac{u}{v} \mid u, v \in C \right\} = \bigcup_{m=-\infty}^{\infty} \left[\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right] = \left(\bigcup_{m=-\infty}^{\infty} \left(\frac{3}{2} \cdot 3^m, 2 \cdot 3^m \right) \right)^c
\]

One can then immediately determine whether a particular integer lies in \(C \), and this gives a number theorist countably many new questions.

1. \(x, 2x \in C \) if and only if \(x = \frac{1}{3^n} \).
2. \(x, 11x \in C \) if and only if \(x = \frac{1}{12 \cdot 3^n} \).
What’s relevant to this talk is what happens with quotients:

$$\left\{ \frac{u}{v} \mid u, v \in C \right\} = \bigcup_{m=-\infty}^{\infty} \left[\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right] = \bigcup_{m=-\infty}^{\infty} \left(\frac{3}{2} \cdot 3^m, 2 \cdot 3^m \right)$$

One can then immediately determine whether a particular integer lies in C, and this gives a number theorist countably many new questions.

1. $x, 2x \in C$ if and only if $x = \frac{1}{3^n}$.
2. $x, 11x \in C$ if and only if $x = \frac{1}{12 \cdot 3^n}$.
3. $x, 4x \in C$ if and only if x is a finite or infinite sum of the form

$$x = \sum_{k} \frac{2}{3^{a_k}}, \quad a_k \geq a_{k-1} + 2;$$
What’s relevant to this talk is what happens with quotients:

\[
\left\{ \frac{u}{v} \mid u, v \in C \right\} = \bigcup_{m=-\infty}^{\infty} \left[\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right] = \left(\bigcup_{m=-\infty}^{\infty} \left(\frac{3}{2} \cdot 3^m, 2 \cdot 3^m \right) \right)^c
\]

One can then immediately determine whether a particular integer lies in C, and this gives a number theorist countably many new questions.

1. $x, 2x \in C$ if and only if $x = \frac{1}{3^n}$.
2. $x, 11x \in C$ if and only if $x = \frac{1}{12 \cdot 3^n}$.
3. $x, 4x \in C$ if and only if x is a finite or infinite sum of the form

 \[
x = \sum_k \frac{2}{3a_k}, \quad a_k \geq a_{k-1} + 2;
 \]

 \[
 4x = \sum_k \frac{2}{3a_{k-1}} + \frac{2}{3a_k}
 \]

 The sum can be finite or infinite, and the gap in exponents ensures no overlap.
The theorem about $4x$ made me start thinking about ratios of left-hand endpoints of the sets whose intersection becomes the Cantor set:

$$\frac{2}{3^{a_1}} + \cdots + \frac{2}{3^{a_r}}$$

$$\frac{2}{3^{b_1}} + \cdots + \frac{2}{3^{b_s}}$$

After cancelling the 2's, pulling out factors of 3 and clearing the denominators, we get

$$3^i \cdot \frac{1}{3^m r} + \cdots + 3^i \frac{1}{3^m 1} + 3^i \frac{1}{3^n s} + \cdots + 3^i \frac{1}{3^n 1} \equiv 1 \pmod{3}.$$
The theorem about $4x$ made me start thinking about ratios of left-hand endpoints of the sets whose intersection becomes the Cantor set:

\[
\frac{2}{3^{a_1}} + \cdots + \frac{2}{3^{a_r}} + \frac{2}{3^{b_1}} + \cdots + \frac{2}{3^{b_s}}
\]

After cancelling the 2’s, pulling out factors of 3 and clearing the denominators, we get

\[
3^i \cdot \frac{3^{m_r} + \cdots + 3^{m_1} + 1}{3^{n_s} + \cdots + 3^{n_1} + 1}
\]
The theorem about $4x$ made me start thinking about ratios of left-hand endpoints of the sets whose intersection becomes the Cantor set:

\[
\frac{2}{3^{a_1}} + \cdots + \frac{2}{3^{a_r}} \\
\frac{2}{3^{b_1}} + \cdots + \frac{2}{3^{b_s}}
\]

After cancelling the 2’s, pulling out factors of 3 and clearing the denominators, we get

\[
3^i \cdot \frac{3^{mr} + \cdots + 3^{m_1} + 1}{3^{ns} + \cdots + 3^{n_1} + 1}
\]

What can we say about integers in this form? (We don’t really need the Cantor set theorems.) Ignoring powers of 3 ($i = 0$ from now on), these integers have to be $\equiv 1 \mod 3$.

Bruce Reznick
University of Illinois at Urbana-Champaign
Quotients of sums of distinct powers of three
The theorem about $4x$ made me start thinking about ratios of left-hand endpoints of the sets whose intersection becomes the Cantor set:

$$\frac{2}{3^{a_1}} + \cdots + \frac{2}{3^{a_r}}$$

$$\frac{2}{3^{b_1}} + \cdots + \frac{2}{3^{b_s}}$$

After cancelling the 2’s, pulling out factors of 3 and clearing the denominators, we get

$$3^i \cdot \frac{3^{m_r} + \cdots + 3^{m_1} + 1}{3^{n_s} + \cdots + 3^{n_1} + 1}$$

What can we say about integers in this form? (We don’t really need the Cantor set theorems.) Ignoring powers of 3 ($i = 0$ from now on), these integers have to be $\equiv 1 \mod 3$. Also,

$$\frac{3}{2} \cdot 3^n > 3^n + 3^{m_r-1} + \cdots + 3^{m_1} + 1 > 3^n,$$

so

$$\frac{3^{m_r} + \cdots + 3^{m_1} + 1}{3^{n_s} + \cdots + 3^{n_1} + 1} \in \left(\frac{2}{3} \cdot 3^{m_r-n_s}, \frac{3}{2} \cdot 3^{m_r-n_s} \right).$$
To sum up,

\[N = \frac{3^{m_r} + \cdots + 3^{m_1} + 1}{3^{n_s} + \cdots + 3^{n_1} + 1} \implies \]

\[N \equiv 1 \pmod{3} \text{ and } N \in \bigcup_{m=0}^{\infty} \left(\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right). \]
To sum up,

\[N = \frac{3^{mr} + \cdots + 3^{m_1} + 1}{3^{ns} + \cdots + 3^{n_1} + 1} \implies \]

\[N \equiv 1 \mod 3 \quad \text{and} \quad N \in \bigcup_{m=0}^{\infty} \left(\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right). \]

Are these conditions sufficient?
To sum up,

\[N = \frac{3^{mr} + \cdots + 3^{m_1} + 1}{3^{ns} + \cdots + 3^{n_1} + 1} \implies \]

\[N \equiv 1 \pmod{3} \quad \text{and} \quad N \in \bigcup_{m=0}^{\infty} \left(\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right). \]

Are these conditions sufficient?

Would I be here if the answer was “yes”?
To sum up,

\[N = \frac{3^{m_r} + \cdots + 3^{m_1} + 1}{3^{n_s} + \cdots + 3^{n_1} + 1} \implies \]

\[N \equiv 1 \pmod{3} \quad \text{and} \quad N \in \bigcup_{m=0}^{\infty} \left(\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right) . \]

Are these conditions sufficient?

Would I be here if the answer was “yes”?

The answer is “no”, but it’s not obvious.
To sum up,

\[N = \frac{3^{mr} + \cdots + 3^{m_1} + 1}{3^{ns} + \cdots + 3^{n_1} + 1} \implies \]

\[N \equiv 1 \mod 3 \quad \text{and} \quad N \in \bigcup_{m=0}^{\infty} \left(\frac{2}{3} \cdot 3^m, \frac{3}{2} \cdot 3^m \right). \]

Are these conditions sufficient?

Would I be here if the answer was “yes”? The answer is “no”, but it’s not obvious.

The first exception is \(N = 529 \), provably. I found other exceptions: 592, 601, 616 and expected a deluge after that. Sakulbuth programmed an algorithm I’ll describe below, and found that the only other exception less than \(10^5 \) is 5368.
Is this question in the literature? Barely, as far as I can tell.
Is this question in the literature? Barely, as far as I can tell. In 1987, John Loxton and Alf van der Poorten wrote a paper in *Acta Arithmetica* called “An awful problem about integers in base four”, which was dedicated to proving that every odd integer can be written as a quotient of sums (and differences) of powers of 4. What was awful was only that there wasn’t an elegant top-down solution. Selfridge and LaCampagne asked a similar question for 3, and the authors mentioned that if differences are removed, that is, reducing it to this problem:

There is some difficulty in describing which integers can occur.

That completes the literature, as far as I have been able to find it.
It’s useful to define a set of what are sometimes called \textit{Newman polynomials}:

\[A = \{ \alpha_0 + \alpha_1 x + \cdots + \alpha_n x^n \mid \alpha_k \in \{0, 1\} \} \]
It’s useful to define a set of what are sometimes called Newman polynomials:

\[A = \{ \alpha_0 + \alpha_1 x + \cdots + \alpha_n x^n \mid \alpha_k \in \{0, 1\} \} \]

Our question then transforms into writing

\[N = \frac{p(3)}{q(3)}, \quad \text{where} \quad p, q \in A. \]

It is convenient to say that \(N \) appears the easy way if, in this equation, \(p(x) = q(x)r(x) \) for some polynomial \(r(x) \) and \(N = r(3) \).
It’s useful to define a set of what are sometimes called *Newman polynomials*:

\[A = \{ \alpha_0 + \alpha_1 x + \cdots + \alpha_n x^n \mid \alpha_k \in \{0, 1\} \} \]

Our question then transforms into writing

\[N = \frac{p(3)}{q(3)}, \quad \text{where} \quad p, q \in A. \]

It is convenient to say that \(N \) appears *the easy way* if, in this equation, \(p(x) = q(x)r(x) \) for some polynomial \(r(x) \) and \(N = r(3) \). It is not necessary to have \(r(x) \in A \): \(1 + x^3 = (1 + x)(1 - x + x^2) \), but \(7 = \frac{3^3+1}{3+1} = 3^2 - 3 + 1 \) the easy way.
It’s useful to define a set of what are sometimes called *Newman polynomials*:

\[A = \{ \alpha_0 + \alpha_1 x + \cdots + \alpha_n x^n \mid \alpha_k \in \{0, 1\} \} \]

Our question then transforms into writing

\[N = \frac{p(3)}{q(3)}, \quad \text{where} \quad p, q \in A. \]

It is convenient to say that \(N \) appears *the easy way* if, in this equation, \(p(x) = q(x)r(x) \) for some polynomial \(r(x) \) and \(N = r(3) \).

It is not necessary to have \(r(x) \in A \): \(1 + x^3 = (1 + x)(1 - x + x^2) \), but \(7 = \frac{3^3+1}{3+1} = 3^2 - 3 + 1 \) the easy way.

Otherwise, \(N \) appears *the hard way*.
Time for some examples. Crucial observation: for \(p \in A \), the summation form of \(p(3) \) gives its (unique) standard base 3 representation. In the theorems below, assume \(p, q \in A \):

THM: If \(p(3) = q(3) \), then \(p = q \).

THM: If \(p(3) = 4q(3) \), then \(p(x) = (1 + x)q(x) \), proof below.

We can also count the number of representations in which \(q \) has degree \(n \). The answer might surprise you. Hope you like the Fibonacci numbers.

THM: If \(p(3) = 7q(3) \), then \(p(x) = (1 - x + x^2)q(x) \).

THM: If \(p(3) = 10q(3) \), then \(p(x) = (1 + x^2)q(x) \).

THM: If \(p(3) = 13q(3) \), then \(p(x) = (1 + x + x^2)q(x) \).

The next one, 16, is in \([3^2 \cdot 3^2, 2 \cdot 3^2]\) and so cannot be represented.

THM: If \(p(3) = 19q(3) \), then \(p(x) = (1 - x^2 + x^3)q(x) \).
Time for some examples. Crucial observation: for $p \in A$, the summation form of $p(3)$ gives its (unique) standard base 3 representation. In the theorems below, assume $p, q \in A$:

THM: If $p(3) = q(3)$, then $p = q$.
Time for some examples. Crucial observation: for $p \in A$, the summation form of $p(3)$ gives its (unique) standard base 3 representation. In the theorems below, assume $p, q \in A$:

THM: If $p(3) = q(3)$, then $p = q$.

THM: If $p(3) = 4q(3)$, then $p(x) = (1 + x)q(x)$, proof below.
Time for some examples. Crucial observation: for $p \in A$, the summation form of $p(3)$ gives its (unique) standard base 3 representation. In the theorems below, assume $p, q \in A$:

THM: If $p(3) = q(3)$, then $p = q$.

THM: If $p(3) = 4q(3)$, then $p(x) = (1 + x)q(x)$, proof below. We can also count the number of representations in which q has degree n. The answer might surprise you. Hope you like the Fibonacci numbers.
Time for some examples. Crucial observation: for $p \in A$, the summation form of $p(3)$ gives its (unique) standard base 3 representation. In the theorems below, assume $p, q \in A$:

THM: If $p(3) = q(3)$, then $p = q$.

THM: If $p(3) = 4q(3)$, then $p(x) = (1 + x)q(x)$, proof below.

We can also count the number of representations in which q has degree n. The answer might surprise you. Hope you like the Fibonacci numbers.

THM: If $p(3) = 7q(3)$, then $p(x) = (1 - x + x^2)q(x)$.

THM: If $p(3) = 10q(3)$, then $p(x) = (1 + x^2)q(x)$.

THM: If $p(3) = 13q(3)$, then $p(x) = (1 + x + x^2)q(x)$.
Time for some examples. Crucial observation: for $p \in A$, the summation form of $p(3)$ gives its (unique) standard base 3 representation. In the theorems below, assume $p, q \in A$:

THM: If $p(3) = q(3)$, then $p = q$.

THM: If $p(3) = 4q(3)$, then $p(x) = (1 + x)q(x)$, proof below.

We can also count the number of representations in which q has degree n. The answer might surprise you. Hope you like the Fibonacci numbers.

THM: If $p(3) = 7q(3)$, then $p(x) = (1 - x + x^2)q(x)$.

THM: If $p(3) = 10q(3)$, then $p(x) = (1 + x^2)q(x)$.

THM: If $p(3) = 13q(3)$, then $p(x) = (1 + x + x^2)q(x)$.

The next one, 16, is in $\left[\frac{3}{2} \cdot 3^2, 2 \cdot 3^2\right]$ and so cannot be represented.
Time for some examples. Crucial observation: for $p \in A$, the summation form of $p(3)$ gives its (unique) standard base 3 representation. In the theorems below, assume $p, q \in A$:

THM: If $p(3) = q(3)$, then $p = q$.

THM: If $p(3) = 4q(3)$, then $p(x) = (1 + x)q(x)$, proof below.

We can also count the number of representations in which q has degree n. The answer might surprise you. Hope you like the Fibonacci numbers.

THM: If $p(3) = 7q(3)$, then $p(x) = (1 - x + x^2)q(x)$.

THM: If $p(3) = 10q(3)$, then $p(x) = (1 + x^2)q(x)$.

THM: If $p(3) = 13q(3)$, then $p(x) = (1 + x + x^2)q(x)$.

The next one, 16, is in $[\frac{3}{2} \cdot 3^2, 2 \cdot 3^2]$ and so cannot be represented.

THM: If $p(3) = 19q(3)$, then $p(x) = (1 - x^2 + x^3)q(x)$.

$$1 - x^2 + x^3 = \frac{1 + x + x^5}{1 + x + x^2}.$$
However, $x^3 + x^2 + 1$ is not a factor of $x^6 + x^4 + x + 1$. In fact, THM: 22 can only appear the hard way.
\[22 = \frac{22 \times 37}{37} = \frac{3^6 + 3^4 + 3 + 1}{3^3 + 3^2 + 1}. \]

However, \(x^3 + x^2 + 1 \) is not a factor of \(x^6 + x^4 + x + 1 \). In fact, THM: 22 can only appear the hard way.

So what is known so far? There is a natural heuristic. Suppose \(3^{r-1} < N < 3^r \). There are \(2^k \) integers of the form \(\sum 3^{a_i} \) with \(0 \leq a_1 < a_2 < \cdots \leq k - 1 \), giving \(2^k \) multiples of \(N \) less than \(3^{r+k} \). Each of these has at most \(r + k \) digits in base 3, and the “probability” that every digit is 0 or 1 is \(\left(\frac{2}{3} \right)^{r+k} \).

Still, \(2^k \cdot \left(\frac{2}{3} \right)^{r+k} = \left(\frac{2}{3} \right)^r \cdot \left(\frac{4}{3} \right)^k \to \infty \) as \(k \to \infty \), so each \(N \) should be represented.
\[
22 = \frac{22 \times 37}{37} = \frac{3^6 + 3^4 + 3 + 1}{3^3 + 3^2 + 1}.
\]

However, \(x^3 + x^2 + 1\) is not a factor of \(x^6 + x^4 + x + 1\). In fact, THM: 22 can only appear the hard way.

So what is known so far? There is a natural heuristic. Suppose \(3^{r-1} < N < 3^r\). There are \(2^k\) integers of the form \(\sum 3^{a_i}\) with \(0 \leq a_1 < a_2 < \cdots < k - 1\), giving \(2^k\) multiples of \(N\) less than \(3^{r+k}\). Each of these has at most \(r + k\) digits in base 3, and the “probability” that every digit is 0 or 1 is \(\left(\frac{2}{3}\right)^{r+k}\).

Still, \(2^k \cdot \left(\frac{2}{3}\right)^{r+k} = \left(\frac{2}{3}\right)^r \cdot \left(\frac{4}{3}\right)^k \to \infty\) as \(k \to \infty\), so each \(N\) should be represented.

What’s wrong? Two things. This works even when \(N\) has been forbidden. More significantly, there is considerable structure in the digital representations of the product. They are not random.
Lemma

Suppose

\[p(x) = \sum_{i=0}^{m} a_i x^i, \quad q(x) = \sum_{j=0}^{n} b_j x^j, \quad a_i, b_j \in \{0, 1, 2\}. \]

If \(p(3) = q(3) \), then \(p = q \).

Proof.

If \(p(3) = q(3) = t \), then there are two valid standard base 3 representations of \(t \):

\[t = \sum_{i=0}^{m} a_i 3^i = \sum_{j=0}^{n} b_j 3^j, \quad a_i, b_j \in \{0, 1, 2\}. \]

These must be formally identical, hence \(a_i = b_i \) for all \(i \).
Theorem

$$4 = \frac{p(3)}{q(3)}, \quad p, q \in A \implies p(x) = (1 + x)q(x).$$

Proof.

Let $$r(x) = (1 + x)q(x)$$; the coefficients of $$r$$ are in $$\{0, 1, 2\}$$. Since $$r(3) = 4q(3) = p(3)$$, it follows from the Lemma that $$r = p$$.

The similar theorem when $$N = 7$$ compares $$(1 + x^3)q(x)$$ and $$(1 + x)p(x)$$, which are equal at 3 and both have coefficients in $$\{0, 1, 2\}$$. For 19, $$(1 - x^2 + x^3)q(x)$$ has coefficients in $$\{-1, 0, 1, 2\}$$, but $$p$$ has coefficients in $$\{0, 1\}$$ and an iterative argument shows that $$-1, 2$$ never occur. One can find similar results for integers of the following kind:

$$3^m + 1, \quad 3^{mr} + 3^{(m-1)r} + \cdots + 1,$$

$$3^{2mr} - 3^{(2m-1)r} + \cdots 1, \quad 3^m - 3^n + 1.$$

Bruce Reznick University of Illinois at Urbana-Champaign Quotients of sums of distinct powers of three
Richard Guy’s Strong Law of Small Numbers applies; these shapes are common for small cases, but in general are quite scarce.
Richard Guy’s Strong Law of Small Numbers applies; these shapes are common for small cases, but in general are quite scarce.

Let’s turn to enumeration questions. When can \((1 + x)q(x) = p(x)\) for \(p, q \in A\)? It is not hard to see that we must have

\[
q(x) = 1 + x^{a_1} + \cdots + x^{a_n}, \quad a_{i+1} - a_i \geq 2.
\]
Richard Guy’s Strong Law of Small Numbers applies; these shapes are common for small cases, but in general are quite scarce.

Let’s turn to enumeration questions. When can \((1 + x)q(x) = p(x)\) for \(p, q \in A\)? It is not hard to see that we must have

\[q(x) = 1 + x^{a_1} + \cdots x^{a_n}, \quad a_{i+1} - a_i \geq 2.\]

How many polynomials are there like that of degree \(n\). Let \(W_n\) denote the number of degree \(\leq n\). It is evident that \(W_0 = 2\) (0, 1) and \(W_1 = 3\) (0, 1, \(x\)). Furthermore, depending on whether or not \(x^n\) occurs in a given \(q\), we see that \(W_n = W_{n-1} + W_{n-2}\), so \(W_n = F_{n+3}\), and the number of polynomials of exact degree \(n\) is \(W_{n-2} = F_{n+1}\).
Richard Guy’s Strong Law of Small Numbers applies; these shapes are common for small cases, but in general are quite scarce.

Let’s turn to enumeration questions. When can \((1 + x)q(x) = p(x)\) for \(p, q \in A\)? It is not hard to see that we must have

\[
q(x) = 1 + x^{a_1} + \cdots x^{a_n}, \quad a_{i+1} - a_i \geq 2.
\]

How many polynomials are there like that of degree \(n\). Let \(W_n\) denote the number of degree \(\leq n\). It is evident that \(W_0 = 2\) \((0, 1)\) and \(W_1 = 3\) \((0, 1, x)\). Furthermore, depending on whether or not \(x^n\) occurs in a given \(q\), we see that \(W_n = W_{n-1} + W_{n-2}\), so \(W_n = F_{n+3}\), and the number of polynomials of exact degree \(n\) is \(W_{n-2} = F_{n+1}\).

Ben has looked at this question for \((1 + x^2)\), and since you need to consider the even exponents and odd exponents separately, the enumeration is a product of two consecutive Fibonacci numbers of index roughly \(n/2\), depending on the parity of \(n\).
What happens with 22? If $22 = \frac{p(3)}{q(3)}$, then $22 \in \left(\frac{2}{3} \cdot 3^3, \frac{3}{2} \cdot 3^3\right)$ implies that the degree of p is exactly 3 more than the degree of q. If $q \mid p$, then the quotient $r = p/q$ must be a cubic. But we know a lot about the coefficients of r, since $p, q \in A$, in fact

$$r(x) = x^3 + c_2x^2 + c_1x + 1, \quad c_i \in \{-1, 0, 1\}.$$
What happens with 22? If $22 = \frac{p(3)}{q(3)}$, then $22 \in (\frac{2}{3} \cdot 3^3, \frac{3}{2} \cdot 3^3)$ implies that the degree of p is exactly 3 more than the degree of q. If $q \mid p$, then the quotient $r = p/q$ must be a cubic. But we know a lot about the coefficients of r, since $p, q \in A$, in fact

$$r(x) = x^3 + c_2x^2 + c_1x + 1, \quad c_i \in \{-1, 0, 1\}.$$

Since $r(3) = 22$, we must have $r(x) = x^3 - x^2 + x + 1$. But now suppose that $q(x) = 1 + a_1x + a_2x^2 + a_3x^3 + \cdots \in A$. The coefficients of $p(x) = q(x)r(x)$ must also be in $\{0, 1\}$. Here they are for x, x^2, x^3:

$$1 + a_1, \quad a_2 + a_1 - 1, \quad a_3 + a_2 - a_1 + 1$$
What happens with 22? If \(22 = \frac{p(3)}{q(3)} \), then \(22 \in \left(\frac{2}{3} \cdot 3^3, \frac{3}{2} \cdot 3^3 \right) \) implies that the degree of \(p \) is exactly 3 more than the degree of \(q \). If \(q \mid p \), then the quotient \(r = p/q \) must be a cubic. But we know a lot about the coefficients of \(r \), since \(p, q \in A \), in fact

\[
r(x) = x^3 + c_2x^2 + c_1x + 1, \quad c_i \in \{-1, 0, 1\}.
\]

Since \(r(3) = 22 \), we must have \(r(x) = x^3 - x^2 + x + 1 \). But now suppose that \(q(x) = 1 + a_1x + a_2x^2 + a_3x^3 + \cdots \in A \). The coefficients of \(p(x) = q(x)r(x) \) must also be in \(\{0, 1\} \). Here they are for \(x, x^2, x^3 \):

\[
1 + a_1, \quad a_2 + a_1 - 1, \quad a_3 + a_2 - a_1 + 1
\]

Since \(a_1, 1 + a_1 \in \{0, 1\} \), we must have \(a_1 = 0 \). Furthermore, \(a_2, a_2 - 1 \in \{0, 1\} \), so \(a_2 = 1 \), but now \(a_3, 2 + a_3 \in \{0, 1\} \), which is impossible.
What happens with 22? If \(22 = \frac{p(3)}{q(3)} \), then \(22 \in \left(\frac{2}{3} \cdot 3^3, \frac{3}{2} \cdot 3^3 \right) \) implies that the degree of \(p \) is exactly 3 more than the degree of \(q \). If \(q \mid p \), then the quotient \(r = p/q \) must be a cubic. But we know a lot about the coefficients of \(r \), since \(p, q \in A \), in fact

\[
 r(x) = x^3 + c_2x^2 + c_1x + 1, \quad c_i \in \{-1, 0, 1\}.
\]

Since \(r(3) = 22 \), we must have \(r(x) = x^3 - x^2 + x + 1 \). But now suppose that \(q(x) = 1 + a_1x + a_2x^2 + a_3x^3 + \cdots \in A \). The coefficients of \(p(x) = q(x)r(x) \) must also be in \(\{0, 1\} \). Here they are for \(x, x^2, x^3 \):

\[
 1 + a_1, \quad a_2 + a_1 - 1, \quad a_3 + a_2 - a_1 + 1
\]

Since \(a_1, 1 + a_1 \in \{0, 1\} \), we must have \(a_1 = 0 \). Furthermore, \(a_2, a_2 - 1 \in \{0, 1\} \), so \(a_2 = 1 \), but now \(a_3, 2 + a_3 \in \{0, 1\} \), which is impossible.

A similar theorem hold for \(N = 34 \) and other larger integers.
I mentioned an algorithm, but I don’t have it in very good visual shape.
I mentioned an algorithm, but I don’t have it in very good visual shape. Given N we find r_n, a sum of powers of 3, less than 3^n, so that

$$r_nN = a_n \cdot 3^n + b_n,$$

where $0 \leq b_n < 3^n$ is a sum of powers of 3. The question then is: do we take $r_{n+1} = r_n$ or $r_{n+1} = r^n + 3^n$? The answer depends on $a_n \mod 3$. If this is 0, we can take 3^n or leave it; if this is 1, we must skip 3^n, if this is 2, we must take 3^n.
I mentioned an algorithm, but I don’t have it in very good visual shape.

Given \(N \) we find \(r_n \), a sum of powers of 3, less than \(3^n \), so that

\[
r_n N = a_n \cdot 3^n + b_n,
\]

where \(0 \leq b_n < 3^n \) is a sum of powers of 3. The question then is: do we take \(r_{n+1} = r_n \) or \(r_{n+1} = r^n + 3^n \)? The answer depends on \(a_n \mod 3 \). If this is 0, we can take \(3^n \) or leave it; if this is 1, we must skip \(3^n \), if this is 2, we must take \(3^n \).

This algorithm determines a directed graph on non-negative integers \(< N/2 \). Integers not congruent to 0 mod 3 have out-degree 1; multiples of 3 have out-degree 2. We want the component of 0 to contain a vertex which is a sum of powers of 3.
Let’s apply it to $N = 22 = [211]_3$: $r_1 = 1$, as always, so $a_1 = 7 = [21]_3$ and $b_1 = 1 = [1]_3$. So we pass on 3, and $r_2 = 1$, $a_2 = [2]_3$ and $b_2 = 4 = [11]_3$.
Let's apply it to $N = 22 = [211]_3$: $r_1 = 1$, as always, so $a_1 = 7 = [21]_3$ and $b_1 = 1 = [1]_3$. So we pass on 3, and $r_2 = 1$, $a_2 = [2]_3$ and $b_2 = 4 = [11]_3$.

Because of the last digit 2 of $[a_2]_3$, we need $r_3 = 3^2 + r_2 = 10$; $r_3 \times 10 = [22011]_3$, so $a_3 = 8 = [22]_3$ and $b_3 = 4 = [011]_3$.

Again, because of the last digit, we must have $r_4 = 3^3 + r_3 = 37$, $r_3 \times 37 = [1010011]_3$, $a_4 = 10 = [101]_3$ and $b_4 = [0011]_3$. We can stop here, because a_4 is a sum of powers of 3, but we could also continue, and find all the possible multipliers for 22.

When you apply this to 529, it takes about 20 steps to loop back to earlier states without ever hitting a sum of powers of 3. A similar thing happens to 592. As I said, Sakulbuth's program shows that there are only a few others up to 100,000. Anyone know how to deal with this in general?
Let's apply it to \(N = 22 = [211]_3 \): \(r_1 = 1 \), as always, so
\[a_1 = 7 = [21]_3 \text{ and } b_1 = 1 = [1]_3. \] So we pass on 3, and \(r_2 = 1 \),
\[a_2 = [2]_3 \text{ and } b_2 = 4 = [11]_3. \]

Because of the last digit 2 of \([a_2]_3\), we need \(r_3 = 3^2 + r_2 = 10\);
\[r_3 * 10 = [22011]_3, \] so \(a_3 = 8 = [22]_3 \) and \(b_3 = 4 = [011]_3. \)

Again, because of the last digit, we must have \(r_4 = 3^3 + r_3 = 37, \)
\[r_3 * 37 = [1010011]_3, \] \(a_4 = 10 = [101]_3 \) and \(b_4 = [0011]_3. \) We can stop here, because \(a_4 \) is a sum of powers of 3, but we could also continue, and find all the possible multipliers for 22.
Let's apply it to \(N = 22 = [211]_3 \): \(r_1 = 1 \), as always, so \(a_1 = 7 = [21]_3 \) and \(b_1 = 1 = [1]_3 \). So we pass on 3, and \(r_2 = 1 \), \(a_2 = [2]_3 \) and \(b_2 = 4 = [11]_3 \).

Because of the last digit 2 of \([a_2]_3\), we need \(r_3 = 3^2 + r_2 = 10\); \(r_3 \times 10 = [22011]_3 \), so \(a_3 = 8 = [22]_3 \) and \(b_3 = 4 = [011]_3 \).

Again, because of the last digit, we must have \(r_4 = 3^3 + r_3 = 37 \), \(r_3 \times 37 = [1010011]_3 \), \(a_4 = 10 = [101]_3 \) and \(b_4 = [0011]_3 \). We can stop here, because \(a_4 \) is a sum of powers of 3, but we could also continue, and find all the possible multipliers for 22.

When you apply this to 529, it takes about 20 steps to loop back to earlier states without ever hitting a sum of powers of 3. A similar thing happens to 592. As I said, Sakulbuth’s program shows that there are only a few others up to 100,000. Anyone know how to deal with this in general?
It’s also worth mentioning that if N appears once, it appears infinitely often. Suppose

$$N = \frac{p(3)}{q(3)}$$

and $\deg p, \deg q \leq T$. If $f(x)$ is any polynomial in A for which the gaps in exponents are greater than T, then $fp, fq \in A$, because there are no possible cross-terms. In this case

$$N = \frac{(fp)(3)}{(fq)(3)}.$$
It’s also worth mentioning that if N appears once, it appears infinitely often. Suppose

$$N = \frac{p(3)}{q(3)}$$

and $\deg p, \deg q \leq T$. If $f(x)$ is any polynomial in A for which the gaps in exponents are greater than T, then $fp, fq \in A$, because there are no possible cross-terms. In this case

$$N = \frac{(fp)(3)}{(fq)(3)}.$$

It doesn’t really fit anywhere, but it is somewhat reasonable to assume that if a number N appears the easy way, then the quotient $\frac{p}{q}$ is always the same. This is false: 551080 (probably not minimal) has two such representations, with p/q equal to:

$$r_1(x) = x^{12} + x^9 - x^7 + 2x^6 - x^5 + x^3 + 1; \quad r_2(x) = r_1(x) + x^6(x - 3).$$
This leads into my final topic. How large can the coefficients of \(\frac{p}{q} \) be, when \(p \mid q \) and \(p, q \in A \)? Consider

\[
1 - x + 2x^2 - 2x^3 + 3x^4 - 3x^5 + 3x^6 - 2x^7 + 2x^8 - x^9 + x^{10}
\]

\[
= \frac{1 + x^2 + x^4 + x^7 + x^9 + x^{11}}{1 + x}.
\]

By extending the obvious pattern, one can get roughly \(\frac{1}{4} \) times the degree. This is optimal for \(1 + x \). What about other denominators?
This leads into my final topic. How large can the coefficients of $\frac{p}{q}$ be, when $p \mid q$ and $p, q \in A$? Consider

$$1 - x + 2x^2 - 2x^3 + 3x^4 - 3x^5 + 3x^6 - 2x^7 + 2x^8 - x^9 + x^{10} = \frac{1 + x^2 + x^4 + x^7 + x^9 + x^{11}}{1 + x}.$$

By extending the obvious pattern, one can get roughly $\frac{1}{4}$ times the degree. This is optimal for $1 + x$. What about other denominators?

Finally, what if you just throw in the towel and look at quotients of power series with 0/1 coefficients? Some experimentation suggests that this is the best example:

$$\frac{1 + x^2 + x^4 + x^6 + \ldots}{1 + x + x^3 + x^5 + \ldots} = \frac{1/(1 - x^2)}{1 + x/(1 - x^2)} = \frac{1}{1 + x - x^2} = \sum_{n=0}^{\infty} (-1)^n F_{n+1} x^n.$$
Thanks to the audience for lasting through this talk.
Thanks to the audience for lasting through this talk.

Thanks also to Steven Klee and Kyle Peterson for organizing this session, and for having the whimsical notion of inviting me to speak.